Trigonometric Integrals

Back

Loading concept...

๐ŸŽญ The Dance of Trigonometric Integrals

Imagine youโ€™re a chef combining ingredients. Sometimes you need to mix things in a special way to get the perfect dish. Trigonometric integrals are exactly like thatโ€”combining sines and cosines using special โ€œrecipesโ€ to solve tricky problems!


๐ŸŒŸ The Big Picture

When we see integrals with sines and cosines multiplied together or raised to powers, we canโ€™t just integrate them directly. We need clever tricksโ€”like a magician pulling a rabbit out of a hat!

Our Two Main Tricks:

  1. Powers of Sine and Cosine โ†’ Use identities to simplify
  2. Trigonometric Substitution โ†’ Replace x with a trig function

๐ŸŽช Part 1: Powers of Sine and Cosine

What Are We Solving?

Integrals that look like:

$\int \sin^m(x) \cos^n(x) , dx$

Where m and n are numbers (like 2, 3, 4โ€ฆ).


๐Ÿ”‘ The Secret: Look at the Powers!

Think of it like sorting laundry:

  • Odd power? โ†’ Easy to separate!
  • Even power? โ†’ Use a special folding trick!

Case 1: One Power is ODD ๐ŸŽฏ

The Trick: Save one factor, convert the rest!

Example: โˆซ sinยณ(x) cosยฒ(x) dx

Step 1: Sin has odd power (3). Save one sin(x): $= \int \sin^2(x) \cos^2(x) \cdot \sin(x) , dx$

Step 2: Convert sinยฒ(x) using the magic identity: $\sin^2(x) = 1 - \cos^2(x)$

$= \int (1 - \cos^2(x)) \cos^2(x) \cdot \sin(x) , dx$

Step 3: Let u = cos(x), then du = -sin(x) dx: $= -\int (1 - u^2) u^2 , du$ $= -\int (u^2 - u^4) , du$ $= -\frac{u^3}{3} + \frac{u^5}{5} + C$ $= -\frac{\cos^3(x)}{3} + \frac{\cos^5(x)}{5} + C$


Case 2: Both Powers are EVEN ๐ŸŽจ

The Trick: Use half-angle identities!

The Magic Formulas: $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ $\cos^2(x) = \frac{1 + \cos(2x)}{2}$

Example: โˆซ sinยฒ(x) dx

Step 1: Apply half-angle identity: $= \int \frac{1 - \cos(2x)}{2} , dx$

Step 2: Split and integrate: $= \frac{1}{2} \int 1 , dx - \frac{1}{2} \int \cos(2x) , dx$ $= \frac{x}{2} - \frac{\sin(2x)}{4} + C$


๐ŸŽฎ Quick Reference Chart

Situation Strategy
sin is odd Save one sin, convert rest to cos
cos is odd Save one cos, convert rest to sin
Both even Use half-angle identities

๐Ÿš€ Part 2: Trigonometric Substitution

The Big Idea ๐Ÿ’ก

Sometimes an integral has a square root that looks scary:

  • โˆš(aยฒ - xยฒ)
  • โˆš(aยฒ + xยฒ)
  • โˆš(xยฒ - aยฒ)

The Magic: Replace x with a trig function, and the square root disappears!

Think of it like putting on disguises. The ugly square root transforms into something beautiful!


๐ŸŽญ The Three Disguises

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Expression      โ”‚  Substitute  โ”‚  Why?    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  โˆš(aยฒ - xยฒ)      โ”‚  x = a sin ฮธ โ”‚  Uses    โ”‚
โ”‚                  โ”‚              โ”‚  1-sinยฒ=cosยฒโ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  โˆš(aยฒ + xยฒ)      โ”‚  x = a tan ฮธ โ”‚  Uses    โ”‚
โ”‚                  โ”‚              โ”‚  1+tanยฒ=secยฒโ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  โˆš(xยฒ - aยฒ)      โ”‚  x = a sec ฮธ โ”‚  Uses    โ”‚
โ”‚                  โ”‚              โ”‚  secยฒ-1=tanยฒโ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐ŸŒˆ Substitution 1: โˆš(aยฒ - xยฒ) โ†’ Use x = a sin ฮธ

Example: โˆซ โˆš(9 - xยฒ) dx

Step 1: Identify: aยฒ = 9, so a = 3

Step 2: Substitute: x = 3 sin ฮธ, so dx = 3 cos ฮธ dฮธ

Step 3: Transform the square root: $\sqrt{9 - x^2} = \sqrt{9 - 9\sin^2\theta}$ $= \sqrt{9(1 - \sin^2\theta)}$ $= 3\sqrt{\cos^2\theta} = 3\cos\theta$

Step 4: The integral becomes: $\int 3\cos\theta \cdot 3\cos\theta , d\theta = 9\int \cos^2\theta , d\theta$

Step 5: Use half-angle (from Part 1!): $= 9 \cdot \frac{1}{2}(\theta + \sin\theta\cos\theta) + C$ $= \frac{9\theta}{2} + \frac{9\sin\theta\cos\theta}{2} + C$

Step 6: Convert back to x:

  • ฮธ = arcsin(x/3)
  • sin ฮธ = x/3
  • cos ฮธ = โˆš(9-xยฒ)/3

$= \frac{9}{2}\arcsin\frac{x}{3} + \frac{x\sqrt{9-x^2}}{2} + C$


๐ŸŒŸ Substitution 2: โˆš(aยฒ + xยฒ) โ†’ Use x = a tan ฮธ

Example: โˆซ 1/โˆš(4 + xยฒ) dx

Step 1: Identify: aยฒ = 4, so a = 2

Step 2: Substitute: x = 2 tan ฮธ, dx = 2 secยฒ ฮธ dฮธ

Step 3: Transform: $\sqrt{4 + x^2} = \sqrt{4 + 4\tan^2\theta}$ $= 2\sqrt{1 + \tan^2\theta} = 2\sec\theta$

Step 4: The integral: $\int \frac{2\sec^2\theta}{2\sec\theta} , d\theta = \int \sec\theta , d\theta$ $= \ln|\sec\theta + \tan\theta| + C$

Step 5: Convert back (draw the triangle!):

  • tan ฮธ = x/2
  • sec ฮธ = โˆš(4+xยฒ)/2

$= \ln\left|\frac{\sqrt{4+x^2}}{2} + \frac{x}{2}\right| + C$ $= \ln\left|\sqrt{4+x^2} + x\right| + Cโ€™$


โšก Substitution 3: โˆš(xยฒ - aยฒ) โ†’ Use x = a sec ฮธ

Example: โˆซ โˆš(xยฒ - 16)/x dx

Step 1: Identify: aยฒ = 16, so a = 4

Step 2: Substitute: x = 4 sec ฮธ, dx = 4 sec ฮธ tan ฮธ dฮธ

Step 3: Transform: $\sqrt{x^2 - 16} = \sqrt{16\sec^2\theta - 16}$ $= 4\sqrt{\sec^2\theta - 1} = 4\tan\theta$

Step 4: The integral: $\int \frac{4\tan\theta}{4\sec\theta} \cdot 4\sec\theta\tan\theta , d\theta$ $= 4\int \tan^2\theta , d\theta$ $= 4\int (\sec^2\theta - 1) , d\theta$ $= 4(\tan\theta - \theta) + C$

Step 5: Convert back:

  • sec ฮธ = x/4
  • tan ฮธ = โˆš(xยฒ-16)/4
  • ฮธ = arcsec(x/4)

$= \sqrt{x^2-16} - 4,\text{arcsec}\frac{x}{4} + C$


๐ŸŽฏ The Triangle Trick

When converting back to x, draw a right triangle!

For x = a sin ฮธ:         For x = a tan ฮธ:         For x = a sec ฮธ:

      /|                       /|                       /|
     / |                      / |                      / |
  a /  | x               โˆš(aยฒ+xยฒ)/  | x              x /  |โˆš(xยฒ-aยฒ)
   /   |                    /   |                    /   |
  /ฮธ___|                   /ฮธ___|                   /ฮธ___|
   โˆš(aยฒ-xยฒ)                  a                        a

๐ŸŒŸ Summary: Your Action Plan

graph TD A["See a trig integral?"] --> B{What type?} B -->|sin^m ร— cos^n| C{Check powers} B -->|Has โˆš...| D{What's inside?} C -->|One is odd| E["Save one, convert rest"] C -->|Both even| F["Use half-angle formulas"] D -->|โˆšaยฒ-xยฒ| G["x = a sin ฮธ"] D -->|โˆšaยฒ+xยฒ| H["x = a tan ฮธ"] D -->|โˆšxยฒ-aยฒ| I["x = a sec ฮธ"] E --> J["U-substitution"] G --> K["Draw triangle at end"] H --> K I --> K

๐Ÿ’ซ Final Tips

  1. For powers: Always ask โ€œIs one power odd?โ€
  2. For square roots: Match the pattern to pick your substitution
  3. Donโ€™t forget: After trig sub, convert back to x!
  4. Practice makes perfect: These become automatic with repetition

Youโ€™ve now got the keys to unlock any trigonometric integral. Go forth and integrate with confidence! ๐ŸŽ‰

Loading story...

Story - Premium Content

Please sign in to view this story and start learning.

Upgrade to Premium to unlock full access to all stories.

Stay Tuned!

Story is coming soon.

Story Preview

Story - Premium Content

Please sign in to view this concept and start learning.

Upgrade to Premium to unlock full access to all content.